# -*- coding: utf-8 -*- '''Example script to generate text from Nietzsche's writings. At least 20 epochs are required before the generated text starts sounding coherent. It is recommended to run this script on GPU, as recurrent networks are quite computationally intensive. If you try this script on new data, make sure your corpus has at least ~100k characters. ~1M is better. ''' from __future__ import print_function from keras.callbacks import LambdaCallback from keras.callbacks import ModelCheckpoint from keras.models import Sequential from keras.models import load_model from keras.layers import Dense, Activation from keras.layers import LSTM from keras.optimizers import RMSprop from keras.utils.data_utils import get_file import numpy as np import random import sys import io path = get_file('ginga.txt', origin='https://www.terra.jp.net/dysd/keras/ginga.txt') with io.open(path, encoding='utf-8') as f: text = f.read().lower() print('corpus length:', len(text)) chars = sorted(list(set(text))) print('total chars:', len(chars)) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) # cut the text in semi-redundant sequences of maxlen characters maxlen = 40 step = 1 sentences = [] next_chars = [] for i in range(0, len(text) - maxlen, step): sentences.append(text[i: i + maxlen]) next_chars.append(text[i + maxlen]) print('nb sequences:', len(sentences)) print('Vectorization...') x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool) y = np.zeros((len(sentences), len(chars)), dtype=np.bool) for i, sentence in enumerate(sentences): for t, char in enumerate(sentence): x[i, t, char_indices[char]] = 1 y[i, char_indices[next_chars[i]]] = 1 # build the model: a single LSTM print('Build model...') model = Sequential() model.add(LSTM(128, input_shape=(maxlen, len(chars)))) model.add(Dense(len(chars))) model.add(Activation('softmax')) optimizer = RMSprop(lr=0.01) model.compile(loss='categorical_crossentropy', optimizer=optimizer) def sample(preds, temperature=1.0): # helper function to sample an index from a probability array preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinomial(1, preds, 1) return np.argmax(probas) def on_epoch_end(epoch, logs): if epoch != 0 and epoch != 9 and epoch != 59 and epoch != 299: return # Function invoked at end of each epoch. Prints generated text. print() print('----- Generating text after Epoch: %d' % epoch) start_index = random.randint(0, len(text) - maxlen - 1) for diversity in [0.2, 0.5, 1.0, 1.2]: print('----- diversity:', diversity) generated = '' # sentence = text[start_index: start_index + maxlen] sentence = '「ではみなさんは、そういうふうに' generated += sentence print('----- Generating with seed: "' + sentence + '"') sys.stdout.write(generated) sentence = '\n' * maxlen + sentence sentence = sentence[len(sentence)-maxlen-1:len(sentence)-1] for i in range(800): x_pred = np.zeros((1, maxlen, len(chars))) for t, char in enumerate(sentence): x_pred[0, t, char_indices[char]] = 1. preds = model.predict(x_pred, verbose=0)[0] next_index = sample(preds, diversity) next_char = indices_char[next_index] generated += next_char # print(sentence, ':', next_char) if len(sentence)